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STRONG REPRESENTATION OF WEAK CONVERGENCE

Z. D. Bai and W. Q. Liang

ABSTRACT

Let Hps N = 1,2,..., and u be a given sequence of probability measures
each of which is defined on a complete separable metric space Sn and S,\
respectively. Also, a sequence of measurable mappings 9n from Sn into S

is given. In this paper, it is proved that if b © ¢'1 weakly converge to y,

n
then there is a probability space (2,F,P), on which we can define a sequence
of random elements Xn’ from & into Sn, and a random element X, from &
into S, such that My is the distribution of Xn’ p is the distribution of

X and lim ¢n(Xn) = X pointwise.
N>

The result of Skorokhod (1956) is a special case of the result of this

- paper. Some applications in the area of random matrices, etc., are also given.
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1. INTRODUCTION

/It is well known that there is a big difference between the concepts of
weak and strong convergence of random variables. In the area of limiting
theory, it is of interest to study the difference as well as the link between

the two concepts of convergence. Recent research work motivates us to investi-

gate them. ‘In Section 2, we shall prove the following theorem.
P / . / - 4 ! A } a e_.,’
= T imgt T2gred, ] S Coro kRS ’,’L/{:p/’-"‘ ) ;[;:' fo homeasin (as )

C/’/‘x"h}(lxu“:)‘ C}'a,n_dom h.ajr"ﬁe—f‘ (_
THEQREM 1: Let Sn’ n=1,2,..., and S be complete separable metric spaces,

with distance functions °n and p respectively, and let ¢n be a measurable
mapping from Sn into S. Suppose that Hp and u are probability measures

defined on Sn and S, the Borel o-fields deduced by the distances and o,

]
n
respectively, and suppose that T ¢;1 L] u. Then there is a probability space

(2,F,P) and a sequence of Sn-valued random elements X . and an S-valued

random element X, defined on (Q,F,P), such that
1) xn has distribution up and X has distribution gy,

2) lim ¢n(Xn) = X, pointwise.
N0

In early 1956, Skorokhod proved a special case of Theorem 1, where Sn =S,
for each n, and 5 are all identity. It should be pointed out that our
Theorem 1 is not a trivial generalization to Skorokhod's theorem. Theorem 1
played a key role in the proof of a theorem in Yin (1984), but Skorokhod's
theorem is not applicable there.

Although Skorokhod's paper was published in early fifties, it seems that

Skorokhod's theorem had not received much attention unfortunately. For instance,

the Helley-Brary theorem can be easily obtained by Skorokhod theorem, but in
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many recent probability textbooks, it was still proved by the approach of

integration by parts. Even though the proof of Skorokhod's theorem seems a
little complicated, we can give a very simple proof to the special case where
d

Sn =S8 = R, the finite dimensional Euclidean space.

The power of Theorem 1 appears in the situation that we often
encounter in large sample theory. Suppose that ¢n(Yn) E o and F(.,-) is
a two-variate continuous function. We are concerned with the limiting behavior
of the roots of the equation F(¢n(Yn),X) = 0. In general, the roots of
F(y,X) = 0 do not have an obvious expression, but in many cases we can prove
that the solution x = x(y) 1is continuous in y. In these cases, by Theorem
1, we only need to investigate the behavior of the solution of F(¢,x) = 0.
Some concrete examples can be found in Bai (1984), Bai and Yin (1984) and
Yin (1984).

We generalized Lusin's theorem to the measurable mapping from a complete

separable metric space into another one. This result is stated in Theorem 2

and it played a key role in the proof of Theorem 1.
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2. A GENERALIZATION OF SKOROKHOD'S THEOREM

We first assume that each o is continuous. At the beginning, we
construct a series of countable partitions of the space S as follows:

Let B(x,r) denote the ball in S, with center x and radius r.
Because S 1is separable, there is a countable set {Xi’ i=1,2,...}, which
is dense in S. Because there are at most countably many values of r such

that u(aB(xi,r)) > 0, for some i, where 3B denotes the boundary of the

set B. Thus for each k, there exists T 2-(k+1) <ry < Z-k, being such
that u(aB(x.,r,)) = 0 forany i =1,2,... . Write C(k,1) = B(x,,r ),
i’k i-1 1’k
C(ksi) = B(Xi,r‘k)\ }31 B(Xjark)’ and set
nk ( )
D. . . = C(Jj,i, (1)
IPRPTER i=1 J

for any i,si,,...5i, = 1,2,... . It is obvious that {D. . } satisfies
1°°2 k 11...1k
the following properties:

1) D. . D. o= if (dys..esi ) # (Gyseeesdy)s

11...1kn Jpee-dy 1 k 1 k
2) o, , = U o, . , s= U o, ,

Tyee Tl 4,21 T1fpee -7y in=1 N1

k 1
(2)
3) u(sD, ) =0,
11...1k

4) d(D, . ) < 2°k, where d(D) denotes the diameter of the set

Using the same approach, for each n, we split S, into partitions
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{Dgn)i j } having similar properties as (D, . i }. Write
12k 2e Tk
(n) . .y = nin) -1
D. . (J 3+009] )'D. . [0} D. Y (3)
11""’1k 1 k 11""’]kn n Jl""!\]k
and
(n) . - (n) . .
P . (J P ) =y (D . (J 2.003) )) (4)
LU EREREL 1 k n 11,...,1k 1 k
It is obvious that d(D(") C(Gyaendl)) < 27K,
11""’1k 1 k
Let @ = [0,1), F be the o-field of all Borel sets in Q, and P be
the Lebesgue measure restricted on F.
Split @ into partitions {Ign) j (jl,...,jk)} with the following
1oty
properties:
1) Each Ign) ; (jl,...,jk) is an interval closed from left
1,.-.’ k
and open from right, and has length p(n) o (Jyseeandn).
11,‘..,1k 1 k
2). For each n and each k, {Ign) o (Jiseeesdy)y s a
11’0"’1k 1 k
partition of [0,1).
(5)
H " G s U U,
1,.-., k-l 1.k=1 J-k=1 1)-.. k
4) If i< for any [PREREELINETINN FERRRRS WP jl,...,Jk,
I{n) . (jyse--»J,.) 1is located on the left of
11’0--,1k 1 k
(n) . .y
I; : i (dys.eendl).
11""’1k_1’1k 1 k




5) If Jp < st s k, then for any i,,...,1, jl""’jt-l’ jt+1""’jk’

1,.--, k
S LA SR T TRNN T
Tpseeesiy 1 t-1°t k
We take a point xgn) i (jl,...,jk) artibrarily from Dgn) i
1°°°°2°k 127777k
if it is not empty and define
(k) _ (n) . . . (n) . .
xn (w) = X’i ,-”’1- (Jla---sJk)s if we I'I ,...,'i (Jlsu-’Jk)- (6)
1 k 1 k
Evidently, for each n and k, Xﬁ is measurable. Because
D(n) : (\j ’.",j ) D('n) 3 (j ""’j )
Tpeeeesipyr 1 k+1 <:: Tyseeenly 1 k
and
. . -k
(o i Gpeenn)) <2,
Tgaeeesy 1 k
we have
oa(1§6, 1D @) <2 (7)

Thus for each n, {X(k), k =1,2,...} forms a Cauchy sequence and there exists

a measurable function Xn such that

because Sn is complete. Therefore, we have defined an Sn-valued random

element Xn for each n.

(jla-- . 5Jk)
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Next, we shall prove that M is the distribution of Xn' Take any open

. = ry(N)
set AnC:LSn, define Am,n {x e A

positive integer and GSA_ 1is the boundary of An and

. (n) 1 .
n’ pn(X ,aAn) > ﬁ}, wiere m is a
n
pn(x("),B) = inf{pn(x("),y(")) ,y(") e B}. It is obvious that for each pair
(n,m), Am,n is an open set contained in A ,and Am,n<::Am+1,n' Thus we

have an expression of Am n 2s follows

- (n), . (n) (5 .
Anm = Z (n) Dil (Jl) + ' Z . . (n) DiliZ(Jl,Jz) + ... (9)
(iy2d,)eN (i407,33y53,)eN
1’1" "1,m 1°°2°Y1°Y2°772,m
where N§n%, Né"%,... are suitable index sets and all the right hand side
terms are disjoint each other.
For each k with 2 X1 ¢ —li , we have
2m
(k) 1,k-1 1
o (X ,X\™Yy < (3) < —5 . (10)
n n 2 . 2m2
Hence
(k)
" (Xn € Am_l,n)c_(xn € Am’n)Cv(Xn € Am+1,n).
us
(k)
P(Xn € Am-l,n) g_P(xn € Am,n) g.P(Xn £ Am+1,n)' (11)

On the other hand, we have

pxt ca =1 e e ol
(ipdpen{™) :
: ) PO = 037 (aodp)) *

(n)
SPRAPTN R PYLL P




+ ) |1§".

) (i..3
Jq2Jd )l + ...
J 1°v2

R (L CRY

n 1
(11’j1)€“§T% :
+ D un(ng’;gz(jl,j?_)) .
(ils]z;jl’jz)ENz,m
=u (A ). (12)

n- m,n

From (11) and (12) it follows that

P(xn 3 Am-l,n) < “n(Am,n) < P(xn € Am+1,n) < P(xn € An). (13)
If we Tet m -~ =, we obviously have Am-l,n 4 An’ Am,n 4 An' Hence from
(13) we get
- = (14
P(X, & A = up(AD) )
Therefore, My is the distribution of Xn’ for each n.
Write
P. = U(D : )a
11a~ ﬂk 119 91k
and split ¢ into partitions {Ii i } such that
1’-.., k
1) for each k, (I, ooy dgs...1 = 1,2,...1 s a partition
11,--~,Tk 1 k

of ¢,




2) each I ; 1s an interval closed from Teft and open from
1,..-, k
right, with its length »p. ;s
1.5 )1
1 k
3) I, . = J 1, -
11,...,1k_1 ].k=1 11,...,1k
4) if i, < i', then 1. . is located on the left of
k k 11,...,1k
I. ; .
119 > k_llk
We arbitrarily take a point x, . from D, . for each
]1”..,1’( 113-.o’1k
(1y5...,1,) and define
x(k)‘:X. j if we I, i
119---, k 11,..., k

Similarly as before, we can prove that there exists an S-valued random element

X such that

o(x'¥) x) < 27K, (15)

and that u 1is the distribution of X.

To complete the proof of the special case of Theorem 1, we need only
to prove that

¢n(Xn) - X, a.s. (16)
Write
Ig”) L= U Y 11@")  Gpendy)
S S T T AE S S

According to the definition of I(”) c {Jesee9d, )y {I(”) .} has

11s---s1k 1 k ]1...1k

analogous properties as Iy ; b and their length satisfies
ceesty
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(n) - ° (n) . .
lIil"‘ikl = j§;1...j§;1 “n(Dil,--~,ik(Jl""’Jk))
1 k
=y (o (D ))

i
O
oy
=3
(=9
=
©

Since u(aD, . )
iseeely n

(n)
IIil,...,ik| > ”(Dil,...,ik)’ as N> (17)

If w is a point of 2 and is not an endpoint of any interval Ii 50
1’..., k

k =1,2,..., 11""’1k = 1,2,..., then for each k there exists a k-multiple

(Ql,...,ak) such that & 1is an inner point of I . In view of the
al,---aak

definition of {Ii i 1o we know that the left and right endpoints of
Ry

I are
le---,dk

1 C!l...C!k_l K

and

= + .
bk ak U(Dal,---,ok)
Similarly, the two endpoints of [\") are
0.1’- .,ak
a,-1 an a, -1
1 2 k

ard = o o e e T o

i, =1 i=1 0 %12 ik=1 917 tk-l'k
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(Nj+1)e

<£+§:° q < €.
=2 i 2J+1(N1,...,Nj+1)

Finally, we shall prove that

v (x € S1 . ¢€(x) is discontinuous at %) = Q.

k
If x ¢ (Kod>o(‘§K , for some k and Ay se e

al,...,ako_l 0 ’ako-l, according

to the definition of ¢€(x)

k

. 0

3 (2) =y , for any z ¢ K K .
£ @pseee sl g 0 (\) al,...,ako_l

Hence 3(x) is continuous at x. If x g L~) Kk , then for any k, there
] 0

exists a k-ple (al,...,uk) such that x e Ka »oap < Npsoosop < N

1,...,ak -
Since K is an open set, we have that o(x, 3K >= o, > 0.
s DU (g ge oyl k
1 k 1 k
If ye S1 and o(x,y) < ops then y e Ky o Hence
1,..., k
o (5,00) 4 5 () < o1
V k ? € 2 ‘1
o (#.0y) 4 0 _(y) < =
K'Y/ 9l Sk-1
and

Therefore,

..............
................................

............................




] kil ;1 %5 (i #1)c
< 5 + e nns -
Z7 55 i) i1 2J+1(N1,. .,Nj+1)2
kfl (N+1)€
< % + 3 1 J .
JFL 2NN LN

Thus
] @ (N.+1)«
k € ]
W\ <54 T
102 55 2J+1(N1,. N +1)
On the other hand, we have
N N
D1 K.
\ 1 '
uio ¢(x,,o(x> > s X € u,.., Ks
( (i 2k-1 = e
1 k
SJ ﬁf ( |
< z, . u(K. . A E. .
=1 =1 Tyoeeenp o Teees Ty
< E,. s z z U(G . . - E, . .
i=1 i =1 §=1 Tpseeeoy g 30 Tyl gd
< Noyooo N o N (e/2k+1(N v N +1)2\ < es2k1
=M k © Nk 1 K

R I II ORI S
DRI AT SRR Sl N T I NI - R S
[V S T SN LB Sl B I T Sal GUE. VIS T T W Sl W T G OO S ol ah e

e
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(31)

(32)

.............
S







We have
N N
K. 1 k
w(l ) k) < (s s U)K )
55 0 1\\$Iég =1 Tk
L Ny
= u(S vevns G, . )
1\\§;ég };é% Tpaeeesly
N N N N
1 k 1 k
iU(sl\u s S.U E.'l 5o ’1' ) + .2_ ] ’ 2_ U(Gi s
4= 1k-1 1 k 11—1 1k-1 1
Ny Ny
< “(51\\&,j el 7D i)
i1 he! 1200027k
M gk .
+ 3 Y u ¢ D . K. .
=l il B "‘;\\ Tpoeeesipey)

€ £ NZI kz'-l ( -1
< - + ul(é 7D, . K.
A S 11 "k-l\\ Tpoeees Tyl
1 k-1
€
+
eS|
2 (Nl,...,Nk+ 1)
! Ng-1 ‘
<HF t ) see.s z u(E, ;
- A L TS I L E IR A
k-1
;1 Neo1 .
+ seees v u(s™D K. )
L Lo Tqgenaesiy, Tseresd
1,71 o™l 1 k 1\\ 1 k-2

20

..,ik
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By the definition of Oy and d+1 WO get that

L]

~<

™
L)

o (x)

e (X) =

I
<

D D

€ .
Otl,... ,Otk Bk+1 al,...,ak 8k+1 al,...,ak

Therefore

o(cbk(X), ¢k+1(X)> < 27k

Thus there must be a limit point, denoted by ¢€(x), of the sequence ¢k(x).

Combining this and (26) we obtain that 1im ¢k(x) = ¢€(x) pointwise. (27)
K-»0
Now we shall prove that

(o) # ¢(x)> < e (28)
Note that if x'} k_J KB, we always have
k=1
o( 0.(x) 5 ¢, (x ) < 1/2%1, for any k > 1. (29)

Therefore, for any k
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5) K. . = G, . s K. . = (G, . G. . )
UETERFA RS Tyseeesiy gl Tyseeasiy 42 11""’1k-12\ Taeeesip 41
Nk'l
; 0
seees = (G G )
et Ve ey lNk\ Q Tpaeeesiy
1k—1
- Ny Nk-l( Ny
6) K7 = oo K. . K. . )
0 iL:{ i L‘il 11""’1k-1\\ J\;{ Tpseeendy
1 k-1 k
yll’ iy if x ¢ Kil’ g 1<y < Npseeol 20 <Ny
7)o (x) = 1 k
by 1(X) it x ekgl ..\ UJKp
ko
If x e K0 for some kO’ then for any k > k0
¢k(x) = fbko(x) (26)
N o
(k-1) 1 k
because Ko\,) ..,kJJK11, B C::Sl\\KO k,)""’k,)KO' If x¢ k.) Kos
1-1 k'l k=1
Ni
then for any k, x ¢ L“J (~) K. i Suppose that x €K s
o 11, .o ﬁl,..ogak
=l =l
and x e K . Since K G, K ‘
By e er 8y BroeeeaBay S 3paee ol & N
and Ki i 's are disjoint, it follows that 81 = Qpsenes ek = -

1,--., k




Define

y: »  if x ek, . ,1<1, <N, 1<i,<N,,
- 1112 i1, 1 1 2 2
¢2(X, -
¢1(x) if x ¢ Kék;)Kg
-1
Then let E«--=K..m¢ D. + . , 1 <i, <N,, 1<1i, <N,
T1ipis iy 117213 1-1 2-"2
. . . . . 3
i< i, <N, Similarly define G, . . , K. . . KT and ¢5(x). By
- '3 3 iyiyig BRPARY 0 3
. . . k
induction we can define E. ., Gs o ., K, ., Kao o, ¢ (%)
]1""’1k ]112”"’1k 11""1k 0 k
satisfying the following relations:
-1
1) E = K . mdBD s 1 <iy <Ngyouuyl < iy <N
s ’]k s "1k-1 i1 Ty 1 1 k k
2) G, K ., G, . 's are open sets.
T1s ”kC TpseeenTyay Tpoee oy
k+1 2
3) u(G AE; ) < gf27 T(Nya. .. sN*L)
11,.. 1k 11, "1k 1 k
4) u(s6; ) =0
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let E, = ¢'1D. . For each 11, there is an open set G. such that
" | 5]
U(aGi ) =0
1
and
2
wG, AE; ) < e/4(N,+1)°,
iy B 1
Write
Ny, -1
Ky = 65 K, = (GNG)° =(G\CJG)O
17 G Kp = (GNG)heees Ky /. G
1 1 11—1 1
Nl
and Ké = Sf\\E:{ Ki’ where AO denotes the interior of the set A. Define
.y-‘l if x EKil’ 11 = 1;-- 9r\15
¢1(X) =
v i x e Kg.
Secondly, let Ei ;= Ki (~\¢'1(Di ; ). Then there exist open sets
1°2 1 12
G, s , i, <N. , i, <N,, such that
i1, 1 iy 2 — 2

1) G¢ : C K- [ -il = 1,2,.-- ,Nl, 12 = 1,2’-009N2,

2) w6y 5 S E; ;) < e/8(N N2,

1Ty 11y
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¢n(Xn) + X, a.S., N > o, (25)

As before, we can make a slight modification on Xn and X so that (25)
holds pointwise. Theorem 1 is proved.

Now we turn to prove Theorem 2. Suppose that S1 and 52 are two
complete separable metric spaces, u is a finite measure defined on
Sl’ ¢: S1 - S2 is a measurable mapping.

Using the same approach, we split 52 into a sequence of partitions
{Di ,...’,i ’11,""ik =1’2’oo-}, k=1,2,ono SUCh that

1 k
D. . = U D. . k = 2,3,
11,---,]k-1 .ik=1 11’.. ,1k,
s,= U D, ,
2 i, i
11-1 1
and d(Di ; ) < 1/2-k, For any fixed ¢ > 0, we can select a sequence
1,..-, k
of positive integers Nl’NZ""’ such that
“Woo & 4, o ] )
D oees : . > (S - (= = _ & 3
i ik2=1 A PP R U -t iie < YR U e i

for any k = 1,2,... . Without any loss of generality, we can assume that

is nonempty, il = 1,...,N1,...,1'k = 1""’Nk‘ Arbitrarily

. . . . . 0
Tqsenasdy Tgseeendps 1y 5_N1,...1k < Nk’ and y ¢ 52.
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On the other hand, it is obvious that
B a6l B D,
where A A B denotes (A\B)kuj(é\A). Thus we have

-1 T-1 1

luo B -usd B < un(5;18 Ao

n'n n’n B)iU(D)<'—1"-’O,

as N > e,

14

Therefore (24) follows from the above estimate and the fact that Mo~ T U

n
According to the special case that we just proved, we can find a probability
space (2, F, P) on which there is a sequence of random elements X, and X

such that

1) M is the distribution of Xn, u is the distribution of X,

2) 5n(Xn) > X pointwise.

ne-1 8
O
—
€
©-2
—
>
—~
e
~—
~—
4.
-
3
—
>
—
£
~—
~—
—~—

I A
nr~18

by Borel-Cantelli lemma we know that
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Example: Let $y = [0,1] with Euclidean norm and Lebesgue measure, and let
52 = {0,1} with p(0,1) = 1. Define

¢ = I[O’%_](X), X .€ S].

where IA denotes the indicator of the set A. For any ¢ < 5, we cannot

NOf =

find a continuous mapping ¢ Sy ~ S, satisfying (22).
A Tittle more complex example yields from the above example with the

measure replaced by wu:

uw>=%L(B)+W§BE%3, 8 < B([0.11),

where L(B) 1is the Lebesque measure of the set B and Q = {rn, n=1,2,...}

) is the set of all rational numbers in [0,1].
Before we prove Theorem 2, we first use Theorem 2 to.complete the proof
of Theorem 1. For each n, according to Theorem 2, there exists a measurable

; mapping ¢ such that
1) w6, #6) < 172",
2) u,(x €53 6n is discontinuous at x) = 0.

We shall first prove that

By, = W (24)

1 1

B, B 5; B. Denote by

Let B be a Borel subset of S and B = ¢; n

D, = {x €S, s (x)# 5n(x)}. By the definition of &

, Wwe have un(D ) < = .
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~

Since P(N) = 0, Xn and Xn (correspondingly i and X ) have the same
distribution. Thus Theorem 1 holds when ¢, are all continuous.
Note that the continuity of ¢n is only used in deriving that

o0, (%), (™)) > 0, as m > =,

(see (20) and (21)). We can relax the continuity restriction as the following
un{x e S, ¢, is discontinuous at x} =0,

for each n. Therefore, to complete the proof of Theorem 1, we only need the

following generalized Lusin's Theorem,

THEOREM 2: Let S1 and 52 be two complete separable metric spaces, u be
a finite measure defined S1 and let ¢ be a measurable mapping from S1

into 52. Then for any € > 0, there exists a measurable mapping ¢ S1 - 52,

satisfying
1) uwle o) <e, (22)
2) ulx € Sl’ 6. is discontinuous at x) = 0. (23)

Remark: The main difference between Theorem 2 and the ordinary Lusin's Theorem
is the condition (23). But in the general case, we cannot require that ¢€ is

continuous. This can be seen from the following example:

----------------------
----------------------------------------------
.......................
-------------------------------
e 0t

--------
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From this and ¢ (X(k)(m)) eD s we get
n‘n ) a

-
(6,06M @), o (1) (w)) < 27K, (20)

From (19) and (20), we get
o4y (X () X)) < 327K + o, (X, (w)).8, (XM (). (21)

Since o is continuous and Xgm)(w) > Xn(w), m-+ o, it follows that

o(6,(X,(w) X(w)) < 327K,

This proves (16) because the set of all endpoints of I ;
I RAAE AT

k=1,2,..., i,...,ik = 1,2,..., is countable, hence its Lebesgue measure is

zZero.

Let N Q be the set on which ¢n(Xn(w)) do not converge to X(w)

and let ¢n(Xn(w0)) > X(wo). Define a new sequence of random elements

as follows:
) Xp(w) if  weQ\N
Xplw) = .
Xn(wo) if weN
and
~ X (w) if we \N
X{w) =

X(wo) if weN

Then we have

¢n(Xn(w)) > X{w) pointwise.




W l: l_' wa

LA

Flar M

R I I R B BN

s Ay AY g Shd
=8 S LN AR Jaden e e,
SO

and

From (17) we have that

(n)

ak >3 (n + )
and

b{™ b, (n =)
Therefore, when n is large enough) w E I<n) . Hence

al,...,ak
(k)

o (X" (w)) €D .

n''n al...ak
Note that X(k)(w) £ Du ,. we get

13. .o ,Ol.k

(s, (KN (w)), X)) < 27K,

From (15) and (18) it follows that

ola (XK (0)), x(w)) < 27

For fixed n and k, and for any m >k, there exist oy ;50 0s...

Such that w ¢ I(n) _ Thus we have
algnaa,ak’uk_‘.l’o-ogk.m

{m) -1 -1
XY (w) €4 (D ) ¢, (D )
n n Ql,...,(lm C*n al,uo-,&.k
or ( )
m
d)n(Xn (w)) € 00‘1’ 3
A O SR S o S S Sl A A e N U L B

...........
.......
-----

----------------------
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Since k 1{s arbitrary, we have proved that ¢E(x) is continuous at «x.

Thus ) Nl Nk
u(x € S, ¢ (x) 1is discontinuous at x) < § } ,..., § u(eK, . ) = 0.
€ - T = : - 1 300.1
k=1 11—1 Tk-l 1 * 'k

This completes the proof of Theorem 2.

3. A SIMPLE PROOF OF THEOREM 1 FOR THE FINITE DIMENSION CASE.

3.1 ONE DIMENSION CASE

Suppose that Fn and F are one-dimensional distributions satisfying
that F 5% F as n>w let o=(0,1). F=8(0,1) and P be the

Lebesque measure restricted on Q. Define

Xn(m) Sup{x: F (x) <w} , wea=/(0,1),

n
and

X(w) = Sup{x: F(x) < =}.

According to this definition, it is evident that Xn(“)-i Xy w € $y
x ¢ R' is equivalent to the fact that F (x) > w. This ensures that F_
is the distribution of Xn' Similarly, F is the distribution of X.

For any w e(0,1), take arbitrarily Xg < X() and Xq is a
continucus point of F(x). Then F(xo) < w, Since Xg is
a continuous point of F(x) and F_ X F, we have F(xg) — F(xg). Thus
when n is large enough we have Fn(xo) < w, s0 that Xn(w) > Xge Hence

X(w) < lim Xn(m) for any w ¢(0,1).
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Let © (0,1) be such that for any e >0, F X(») + ¢ > w. Take e > 0 such

that X(w) + € is a continuous point of F(x). Since F (}(w) + e>f+

4 7/ A >

. F K?(m) + s> > w, when n 1is large enough we have Fn (X(w) + e> > w.

t Thus, according to the definition of Xn(w) . Xn(m) < X(w) + €. This shows
that Tim X (w) < X(w). Hence, lim X (w) = X(uw). If for some w e(0,1),

N0 N-<

/ .
there exists a constart e; > 0 such that w =F \X(w) + EO) , then for any.

/
0<e<ey F \X(») + e0> > F (X(w) + e> >uw=F <X(w) + s0.> Hence
F (F(m) + e> = F <X(w) + e&) = w. Thus there exists a rational number

vy = y(w) € (X(w) y X{w) + €0> , corresponding to w«. If there are two points

< w, which correspond to vy , v, respectively s we shall prove that

“1
Y] < Yy In fact, if wy = F (X(w’-) + €i> > €5 > 0,1i=1, 2, then

X(wl) tey < X(wz). Otherwise, Xl(wl) < X(wz) < X(wl) + g < X(m2)+ €9 would
imply that wy = F (X(wl) + sl> =l=<x(m2) + 52\> = wy, contradicting to the
assumption that Wy < wy. Thus there are at most countably many « such

that Xn(w) - X(w). Hence

Xn(w) — X(w) a:s , n— =,

As before, we can change the definition of Xn(w) and of X(w) at

those w's at which X (u) = X(x), so that

Xn(w) — X(w) pointwise, n + =,
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3.2 TWO DIMENSION CASE

Let F(n)(- , +) and F(. , .) be two-dimensional distributions such

- that F(n) A F,ns e Let F§")(-) and Fﬁn)(-[x) denote the marginatl

N
_ distribution of the first component and the conditional distribution of the
- second component when given the first component to be x, corresponding to

F(n). Define random vectors (X

n s Yn) on 9 = (0,1) x (0,1) as follows:

B>

A
Xy > wp) 2 X (ug) = sup {xs FAM(x) < wy [ iF w0y e(0,1)

Y (0 5 wp) = Supd y: F{M) <y[Xn(m1)> <upl o if we(0,1), 1 = 1,2,

We can similarly define random vector {X, Y}. As before we can show that

Xplwg) < X 5 Y (wgswy) < ¥} is equivalent to

{F)((”)(x) >0y F}(’n) (ylxn(‘”l)) > wp}, and that

(r)

Fe 7(x)

f X Ff/") (ylxn(w1)> d u)
G

=
| A
x
-
<

>

|

<
e
"

= [ EM e M = Fx g

-]

Similarly, F{. , <) 1is the distribution of (X , Y). Using the conclusion

in 3.1, we have

Xplag) — X(v) a.s.
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with respect to the one-dimensional Lebesque measure restricted on (0,1),

By Fubini's Theorem, we know that

Xn(wl:wz) = Xn(wl) I X(wl) = X(wlswz)

with respect to the two-dimensional Lebesque measure restricted on (0,1) x (0,1).
Again using the conclusion about one dimension case, for any fixed wy € (0,1),

we get that
Yn(ml,wz) — Y(wl,mz) a.s.

with respect to the one-dimensional Lebesque measure restricted on (0,1).

Again using Fubini's Theorem, we obtain
Yn(wl,wz) —_ Y(wl,wz) a.s.

with respect to the two-dimensional Lebesque measure restricted on (0,1) x (0,1).

For d-dimension case, the proof is the same as in two-dimension case.
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- 4. APPLICATIONS OF THEOQREM 1
:\: 4.1 HELLEY-BRAY THEOREM ([2] and [4]).
o
Y If Fn-!L F and g(x) 1is a continuous bounded function, then
[stx)F(80) — [atx0F(ax)
PROOF. Construct X -~ Fn s X ~F and X, — X, according to Theorem 1.
Then by the dominated convergence theorem we have
[atx)7y(x) = Eg(x) — E9() = [g(x)F(ex)
o~ 4.2 (See [4])
f If Fn-li F, then fn(t) — f(t) uniformly on any bounded interval,
: where fn and f are the characteristic functions of Fn and F, respectively.
'~ PROOF.
.; Let T >0 be any fixed number. Then

e

itX .
[E(e1 n _ e'ltX)(

I£,(t) - £(t)]

Eleit(xn'x) - 1}

in

< 2P({Xn =Xl >e/T)+ e — <, it <T.

- Hence [fn(t) - f(t)| — 0 wuniformiy on [-T, T].




4.3 (See [4]).

W
If Fn-—» F and r > 0, then

[IX17F(@0) < Lim (1217, (ex).
N0

PROOF.

Let X -~ F

n n» X ~F and Xn ~ X. Then what to be proved is equivalent

to

EIXI" < Lim Ex |".
N

The latter is just a special case of Fatou Lemma.

4.4

1f {Xn} converges in distribution to F , Y_ to Ea’ the degenerate

n

distribution concentrating its mass at a, and Zn converges to E,', b >0,
then {(Xn + Yn)Zn} converges in distribution to G(x) = F(g - a) (See [4],

Th.4.4.6 and the corollary after it).
PROOF.

Since {(Xn , Y Z )} converges in distribution to F(x)Ea(y)Eb(z).

n?’>mn

By Theorem 1, we can construct (Z_ , Yp o Zn) — (Z ,a, b) - F(x)Ea(y)Eb(z).

n

Thus (Z, + ¥)Z, — (z+a)b ~ F({;- - a). Q.E.D.
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Though the original proofs of the above four results are not very

complicated, the proofs given here are relatively easier. In the following

examples, the proofs will be involved with much difficulty if you do not

use Theorem 1,

4.5 (See [11, [7] and [8]).

Suppose that (W3, 1 <1 .<p, 1< 5.k-1}1ﬂ_9-{wij, 1<1<P,
1<j<k-1} and that {uﬁg) ,1<i<j<ping (Uj; s 12135 <Ph
Consider the detrimental equation

det (3 W W -V%;cm +0-2y) =0,

m m

where wm = ”w;g||: px(k-1) , Um =|,U§?)|I: pxp, with Ug?) = U§T),

D = '(x )1 '

1_¢ ul. }‘

(Ay - o)Iu %

“per|

\

c{m,... clm; glm)”

C_=ll (m) (m) o(m)*
m C\n " ’Cw Ev
(m) (m)
Evl’ ’Ev 0
- -:.:. ._:’. . *;\:’:'- o ‘.:’._'.. ...... e et AT T e T e
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C(m) =i

, 1= ah_1+1,...,ah sy J = ag_1+1,

g W3 /iy

«23g5 l<h<g=<wv

o) - iy

sy i=r+l,...p,J= LI R FRRRRL

a0=0 ,ah=ah_1+uh ,h=1,2,...,\). a Y'_f_P ,)\l >,...,>\)>O,

Y

Let 9 m) > 0 be roots of this determinantal equation and let

(m) _ (m) . - (m) _ g lm)
Z; —vfﬁ?¢i S Apds 1=y + 1.8, h=1,2,000,v, and i =mes

i= r+1,...,p. Then the joint distrubution of (ng),...,Zém)) tends in

distribution to that of Z Z , where Z >0 7 are the roots of

1’oan’p ah-1+1_

)

det(Chh + thh -IZ1 ) =0,h=1,2,...,v,

“h

and 7.4 250002 Zp are the roots of

det(lldij“ - 21 ) = 0,
where

Gk = || g #5510 3= e v 1y

[ Vsg]] > 9= 3hep * Loy s Ugy = Uy,
k-1

iy W,, W
1 z=§+1 !

50 i,J=r+1,...,p.
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PROOF.

According to Theorem 1, without loss of generality, we can assume that
(m) _ (m) (m) _ L .
wij wij and Uij — Uij Uij pointwise. The explicit proof refers
to [8] and is omitted here.

4.6 (See [2], [5], [6])

W
Suppos: that (xnl’XnZ""’Xnk) — (il,...,xk) for any k, and that

oo

Tim Tim 5 |X_ .| = 0 in probability, X and ) X, a.s. converges.
ko mem KEK K kzl nk kep K )

Also suppose that gk(t) is uniformly bounded in k and t. Then the sequence

of stochastic processes kil Xnkgk(t) weakly converges to the stochastic

process kél ngk(t).

PROOF.

Set S = (xl,xz,...,): kzllxkl < =}, Define

/ \ s o
o \(xl s Xoseees) s (y1 , y2,...,)/ = kzl{xk-yk{. Then it is easy to see

that S is a complete separable metric space and (an . an,...) .

(X1 . X2,...,) are random elements on S with property

W
(X ,Xnk,---,)—> (Xlgno-, Xk,.-.’)o

nl’.c-
According to Theorem 1, we can assume that this convergence is true pointwise.

It is not difficult to show that
|3 %o g (t) - 1 X9, (t)]
K21 nk “k k=1 k 7k
5 < M Y Ix . -x,|>0. a.s.
= ksp Mk Tk

and the proof is complete.

ettt e T
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For details of this example, the reader is referred to Bai and Yin (1984),.
The proof of Theorem 5.2 given there can be greatly simplified by using Theorem 1.
In all the above examples, we can use Skorokhod's Theorem. In the following

we shall give an example to show that Skorokhod's Theorem is unapplicable.

= . - (+(p) -
Suppose that Xp (Xij)' pxn and Tp (tij ) satisfy

1) {Xi ,1,j=1,2,...} are i.i.d. random variables with mean zero and

J
. 2
variance o > 0.

2) For each p, Tp is a non-negative definite random matrix.

3) Xp is independent of Tp.

trace t k nP Hk as p -~ =, for each k.

sho Ol—

5) — ye(0,=),p~>e.

Then for any k > 1

1 1y o0k
5 trace (H Xp Xp Tp) E, inopr.

where E _ is a constant depending only upon o , y and Hy,...,H, (See [9]).

PROOF.
o+ L
Take Sp = R 2 P(P+1), the Euclidean Space
by = {% trace T; s 1= 1,2,... .k Sp T [0, =) and ¥p the measure on

S, deri b X , 7).
erived by ( o p)

P
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By the assumptions we have

-1 w £

¢ —_—

U .
PP (HyseeoaHy)

Thus, we can assume, by Theorem 1, that for fixed Kk,

i

1
{p trace Tp

sy 12 1,2,...,k) — {Hl,...,Hk} pointwise,

After truncation and centralization on {Xij s 1 5 J=1,2,...41,

we can prove that

1 15 50 Kir1
E[p trace {p Xp Xp Tp} ITp] E > P

and

© 1 1 -~ ~ k 2
— = ' 1 - o«
Zl E{[p trace i Xp Xp Tp, Hk] |Tp} <

P

(p)

i] is the random variable obtained from

here X = ||x(P)
where X, M 1Jll, pxn and X

Xij by truncation and contralization. Thus

1 1 k
= tra =X X'T7 —_— .
- race {p o *p p} Ek, a.s
and consequently
1 Ay xr7 K
D trace D% Xp p’ Ek’ a.s.

Since we have used Theorem 1, the above expression only implies that the convergence
to be proved is true in probability. The details of the proof can refer to [9].
Note that in this example Skorohod's Theorem is unapplicable, because Sp,

defined here, is not the same.

- L - . -. -
PR NN
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